SHF Communication Technologies AG

E-Mail: sales@shf-communication.com•Web: www.shf-communication.com

Datasheet SHF C702 A
 50 GHz / 64 Gbps
 Dual 2:1 RF Switch

Description

The SHF C702 A is a dual 2:1 broadband RF switch, operating form 100 kHz up to 50 GHz for clock signal, and up to 64 Gbps for NRZ Data signal. It offers high quality output signals together with a compact size and ease of operation.
The two switches are fully independent RF building blocks housed in a single chassis, as indicated by the block diagram below, and operated by a single software. It operates in both directions, i.e. the signal can be applied to or taken from the common (COM) port.
An option with low frequency compensation (LFC) is also available.

Features

- Broadband operation up to 50 GHz
- Up to 64 Gbps NRZ Data signal
- Bi-directional
- Low power consumption
- Two individual switches in one module
- Single-ended operation
- USB interface
- Simple, easy to use GUI
- Automated measurements by using different software environments easily possible ${ }^{1}$

Applications

- Broadband test and measurement equipment

Block Diagram

[^0]
Accessories

- Functional earth cable
- Mini-USB cable

Options

Option - Low Frequency Compensation (LFC)

The Low Frequency Compensation option is offered in order to reduce the frequency response roll-off. Due to a lower loss at the lower frequencies there is a typical role-off of 5 dB between 1 MHz and 50 GHz . The compensation reduces the roll-off to approximately 2 dB over the frequency range, but at the same time increases the insertion loss by roughly 3 dB at the lower frequency range.

Absolute Maximum Ratings

Parameter	Unit	Symbol	Min.	Typ.	Max.	Comment
Input Parameters	dBm	$\mathrm{P}_{\text {in }}$			23	
Input Power	V	V $_{\text {DCext }}$	-6		+6	AC coupled ports
External DC Voltage on RF Ports						

Specifications - SHF C702 A

Parameter	Unit	Symbol	Min.	Typ.	Max.	Comment
Performance						
Minimum Input Frequency	kHz	$\mathrm{f}_{\text {min }}$			100	Clock Signal
Maximum Input Frequency	GHz	$\mathrm{f}_{\text {max }}$	50			Clock Signal
Bandwidth	GHz	$\begin{aligned} & f_{\mathrm{fdB}} \\ & \mathrm{f}_{6 \mathrm{~dB}} \end{aligned}$		$\begin{aligned} & 38 \\ & 50 \end{aligned}$		Clock Signal
Data Rate	Gbps		64			Data Signal
Insertion Loss	dB			$\begin{aligned} & 2 \\ & 3 \\ & 4 \\ & 6 \end{aligned}$	$\begin{gathered} 2.5 \\ 4 \\ 5 \\ 7 \end{gathered}$	$\begin{aligned} & <25 \mathrm{GHz} \\ & 25-30 \mathrm{GHz} \\ & 30-40 \mathrm{GHz} \\ & 40-50 \mathrm{GHz} \end{aligned}$
Isolation	dB		27	40		
Return Loss	dB		6	10		$<50 \mathrm{GHz}$, RF 1/2
Return Loss	dB		5	10		$<50 \mathrm{GHz}$, Common
Settling Time	ms			1		
Switching Transient Overshoot ${ }^{2}$	mV				± 300	

Output Parameters

Jitter RMS	fs	JRMS			
Duty Cycle	$\%$	DC			See note 3

[^1]| Parameter | Unit | Symbol | Min. | Typ. | Max. | Comment |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Power Requirement | | | | | | |
| Supply Voltage | V | $\mathrm{V}_{\text {cc }}$ | +4.40 | +5.00 | +5.25 | Mini USB |
| Supply Current | mA | $\mathrm{I}_{\text {c }}$ | | 65 | | |
| Power Dissipation | mW | P_{d} | | 325 | | $@ V_{C C}=+5 \mathrm{~V}$ |
| Mechanical Characteristics | | | | | | |
| Switch A RF A1 | Ω | | | 50 | | 1.85 mm (V) female |
| Switch A RF A2 | Ω | | | 50 | | 1.85 mm (V) female |
| Switch A COM A | Ω | | | 50 | | 1.85 mm (V) female |
| Switch B RF B1 | Ω | | | 50 | | 1.85 mm (V) female |
| Switch B RF B2 | Ω | | | 50 | | 1.85 mm (V) female |
| Switch B COM B | Ω | | | 50 | | 1.85 mm (V) female |
| Dimensions | mm | | | | | See Outline Drawing |
| Weight | g | | | 90 | | |
| Conditions | | | | | | |
| Operating Temperature | ${ }^{\circ} \mathrm{C}$ | $\mathrm{T}_{\text {ambient }}$ | 15 | | 35 | |

Specifications - SHF C702 A Option LFC

Parameter	Unit	Symbol	Min.	Typ.	Max.	Comment
Performance	GHz	$\mathrm{f}_{3 \mathrm{~dB}}$		>50		Clock Signal
Bandwidth	dB			4	5	$<38 \mathrm{GHz}$
Insertion Loss				6	7	$38-50 \mathrm{GHz}$
Return Loss	dB		6	10		$<50 \mathrm{GHz}, \mathrm{RF} 1 / 2$
Return Loss	dB		5	10		$<50 \mathrm{GHz}$, Common

[^2]
Typical RF Performance @ +25² C

C702 A (no option)

The measurements below had been performed using a VNA.

Insertion Loss

Return Loss (RF A1/2, RF B1/2)

Return Loss (COM A/B)

C702 A (option LFC)

The measurements below had been performed using a VNA.

Return Loss (RF A1/2, RF B1/2)

Return Loss (COM A/B)

Typical Output Waveforms

Clock Output Signals

The measurements below had been performed using an Anritsu signal generator (3697C) and an Agilent Digital Communication Analyzer (DCA) with a Precision Timebase Module (86107A) and a 70 GHz Sampling Module (86118A). The outputs of the Switch module had been connected directly to the DCA input. Input power of the clock signal is $0 \mathrm{dBm}\left(630 \mathrm{mV}_{\mathrm{pp}}\right)$.

5 GHz input signal

50 GHz input signal

5 GHz output signal

50 GHz output signal

[^3]
Data Output Signals

The measurements below had been performed using a SHF 12104 A Bit Pattern Generator and an Agilent Digital Communication Analyzer (DCA) with a Precision Timebase Module (86107A) and a 70 GHz Sampling Module (86118A). The outputs of the Switch module had been connected directly to the DCA input. Input Data amplitude is $\sim 630 \mathrm{mV}_{\mathrm{pp}}$, and it is a PRBS $2^{31}-1$ signal.

50 Gbps input signal

50 Gbps output signal

50 Gbps output signal - Option LFC

[^4]

64 Gbps output signal

64 Gbps output signal - Option LFC

[^5]
Outline Drawing - Module

Pos	Port	Connector
1	RF A1 SW A	$1.85 \mathrm{~mm}(\mathrm{~V})$ female
2	RF A2 SW A	$1.85 \mathrm{~mm}(\mathrm{~V})$ female
3	COM A SW A	$1.85 \mathrm{~mm}(\mathrm{~V})$ female
4	RF B2 SW B	$1.85 \mathrm{~mm}(\mathrm{~V})$ female
5	RF B1 SW B	$1.85 \mathrm{~mm}(\mathrm{~V})$ female
6	COM B SWB	$1.85 \mathrm{~mm}(\mathrm{~V})$ female

All dimensions are in mm

Port	Connector
a	Mini-USB
b	nc
c	Functional earth (FE)

[^0]: ${ }^{1}$ To operate the switch, intuitive and well documented plain text commands are sent and received via USB. Thus the device can be operated either by the complementary software or automated by any programming language which can communicate with serial devices.

 SHF reserves the right to change specifications and design without notice - SHF C702 A - V002 - December 02, 2020 Page 2/14

[^1]: ${ }^{2}$ Switching Transient Overshoot refers to a voltage overshoot measured on the module's ports while toggling the switch
 ${ }^{3}$ No degradation in jitter or duty cycle performance were observed for sine wave signals
 SHF reserves the right to change specifications and design without notice - SHF C702 A - V002 - December 02, 2020 Page 4/14

[^2]: SHF reserves the right to change specifications and design without notice - SHF C702 A - V002 - December 02, 2020 Page 5/14

[^3]: SHF reserves the right to change specifications and design without notice - SHF C702 A - V002 - December 02, 2020 Page 11/14

[^4]: SHF reserves the right to change specifications and design without notice - SHF C702 A - V002 - December 02, 2020 Page 12/14

[^5]: SHF reserves the right to change specifications and design without notice - SHF C702 A - V002 - December 02, 2020 Page 13/14

